NCI-IARC Tumor Workshop: Esophageal Squamous Cell Carcinoma

Genetic and Genomic Research in Africa

Chris Mathew

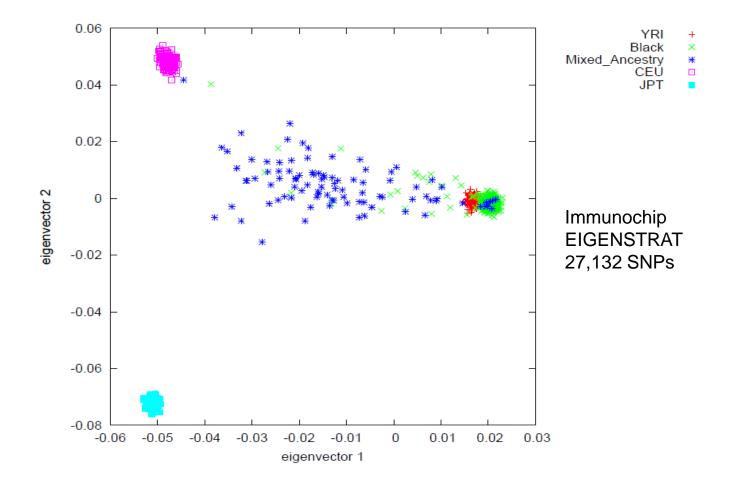
Sydney Brenner Institute for Molecular Bioscience, U. Witwatersrand, South Africa Dept. Medical & Molecular Genetics, Guy's Hospital, King's College London christopher.mathew@kcl.ac.uk

Colleagues/Collaborators

Hannah Bye, KCL & ICR, UK Cathryn Lewis, KCL, UK Natalie Prescott, KCL, UK Michael Simpson, KCL, UK Iqbal Parker ICGEB Cape Town Marco Matejcic, ICGEB/IARC Chantal Babb, U. Wits/Cambridge Pascale Willem, U. Wits, SA Michele Ramsay, SBIMB, U. Wits, SA Debbie Bradshaw, MRC, SA Freddy Sitas, U. Sydney, Australia Tim Waterboer, DKFZ, Germany Rob Newton, U. York UK/MRC, Uganda Peter Campbell, WTSI Cambridge, UK Phil Jones, WTSI Cambridge, UK

African ESCC: genetics and genomics

- 1. Genetic association studies to identify germline genetic variants which contribute to the risk of African ESCC
- 2. DNA analysis of tumour tissue to identify somatic mutations that are drivers of tumorigenesis
- Brief review of published work
- Summarise recent unpublished work
- New funded studies
- Unanswered questions


Published genetic associations for ESCC in South Africa

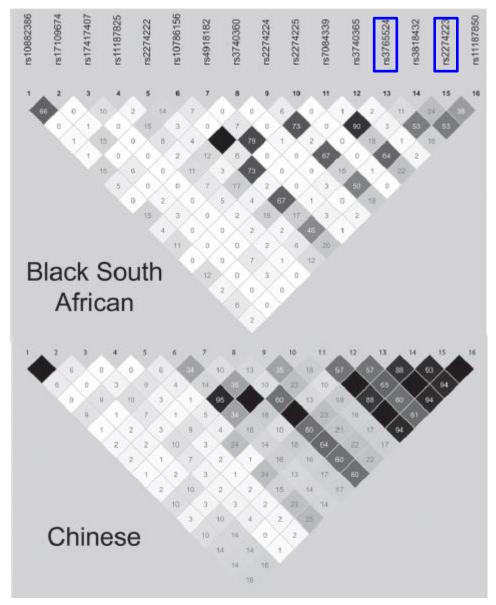
Gene	Association	Authors		
Cytochrome P450	CYP2E1*6 increased risk (OR 5.9, P<0.001) CYP3A5*3 reduced risk in MxA (OR 0.60, P=0.025)	Li et al, 2005 Dandara et al, 2005		
SLC11A1	-237C>T increased risk in MxA (P<0.002)	Zaahl et al, 2005		
SULT1A1	SULT1A1 R213H increased risk (smokers, OR 2.1)	Dandara et al, 2006		
ADH3	Ile350Val increased risk, SAB (OR 1.8, P<0.0004)	Li et al, 2008		
ALDH2	+82G>A reduced risk in MxA (OR 1.43, P<0.004)	Bye et al, 2011		
GSTP1 GSTT2B	341C>T (A114V) increased risk in SAB/MxA (OR 4.98) Deletion reduced risk in MxA (OR 0.71, P=0.004)	Li et al, 2010 Matejcic et al, 2011		
Ceruloplasmin	G633G increased risk in SAB (P=0.0004)	Strickland, 2012		
MSH3	Ala1045Thr increased risk in MxA (OR 2.71, P=0.006)	Vogelsang et al, 2012		
PLCE1	rs2274223 not associated in SAB (OR 1.06, P=0.52) Arg548Leu reduced risk in SAB (OR 0.74, P=0.008)	Bye et al, 2012		
NAT2	rs1801280 reduced risk in MxA (OR 0.31, P=0.026)	Matejcic et al, 2015		
SAB: South African Black population				

MxA: Mixed Ancestry population, Western Cape

Population structure

- >2000 linguistic/ethnic groups in Africa, with differences in genetic architecture
- Need to genotype a large number of SNPs to correct for population structure
- Principal component analysis shows tight clustering of Xhosa-speakers, but heterogeneity in the Cape Mixed Ancestry population

ESCC GWAS loci in the South African Black population


Locus	SNP	MAF Cases	MAF Controls	OR (95% CI)	P value
<i>RUNX1</i> /2q22	rs2014300	0.378	0.403	0.90 (0.76-1.07)	0.23
<i>CASP8</i> /2q33	rs13016963	0.330	0.340	0.96 (0.79-1.17)	0.68
<i>TMEM173</i> /5q31	rs13153461*	0.046	0.047	0.98 (0.68-1.42)	1
<i>PLCE1</i> /10q23	rs2274223	0.416	0.403	1.06 (0.89-1.25)	0.52
<i>ATP1B2</i> /TP53/17p	rs1642764	0.230	0.194	1.24* (1.02-1.52)	0.031
<i>XBP1</i> /22q12	rs2239815	0.22	0.16	1.41 (1.15 – 1.73)	0.0008
<i>CHEK2</i> /22q12	rs4822983	0.46	0.39	1.31 (1.11 – 1.54)	0.0013
<i>CHEK2</i> /22q12	rs1033667	0.44	0.38	1.29 (1.09 – 1.51)	0.0025

Genotyping in 513 ESCC SAB cases and 820 controls ADH1B Arg48His and ALDH2 Glu504Lys are not polymorphic in the SAB population

*Proxy for rs7447927 – failed assay design *Opposite effect to Chinese GWAS

Linkage disequilibrium at *PLCE1* in South African vs Chinese populations

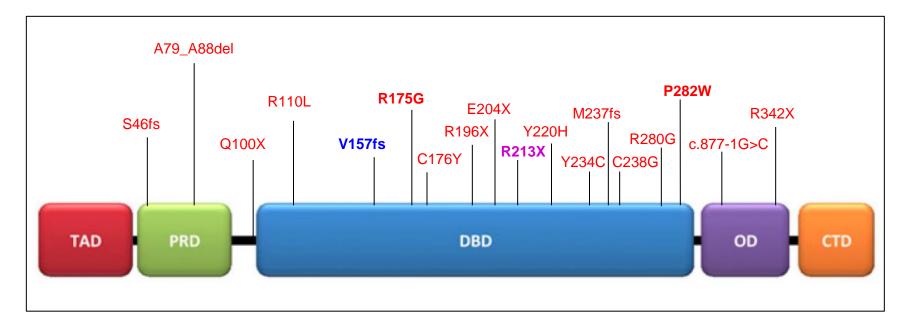
- Much lower LD in Black South African population
- Dense SNP map required to detect association
- Advantage for fine-mapping causal variants

New and proposed African ESCC association studies

- Agena MassArray genotyping (36 SNP-plexes)) of known ESCC loci and ancestry informative markers in 1000 Black SA cases and 1000 controls from Johannesburg Cancer Study (JCS) – replication and fine-mapping (CANSA/U.Wits)
- GWAS of 2000 SAB ESCC cases (JCS & Western Cape) and 6000 controls (Johannesburg/Soweto H3A/NIH) using H3A pan-African GWAS SNP array* (Newton fund: SA/UK MRC, GSK)
- IARC/NCI case-control studies in East Africa (Van Loon, McCormack et al)
- Planned project grant application to NIH H3 Africa call: additional ESCC recruitment/GWAS in South & East Africa

*Illumina array: 2.5M SNPs incl. MEGA content; 750K tag SNPs selected from WGS of 3500 African genomes; previous GWAS hits; majority SNPs MAF >5%

Somatic mutations in African OSSC


Main approaches used to screen tumours:

- Comparative genomic hybridisation, FISH or LOH analysis to screen for deletion or amplification of genomic regions
- Screening of candidate genes (mainly *TP53*) to detect point mutations in tumour with/without paired normal tissue

Authors	Methods	Findings
Gameldien et al, 1998	SSCP of <i>TP53</i> exons 5-8 & <i>CDKN2A</i> exons 1-2, sequencing	From 76 SCCs, Transkei: <i>TP53</i> mutations in 17%; <i>CDKN2A</i> in 21%
Du Plessis et al, 1999	CGH of 27 OSCCs & 2 AOCs, SAB & MxA	Freq loss (>50%) chr 1p, 4p, 19p/q Freq gain (>50%) chr 3q, Xq, 8q, 2q
Naidoo et al, 2005	Microsatellite repeat instability & LOH, 6 MS in 100 OSCCs/KZN	MSI very low: 0-5% LOH was 18-41%
Brown et al, 2011	Cytogenetics, M-FISH, SNP array 5 SA OSCC cell lines	Common translocn 1p11-12/3p11.2 Gains/losses > Wnt & FGF signalling
Patel et al, 2011	28 OSCCs from Kenya Sequencing exons 5-8 <i>TP53</i>	<i>TP53</i> mutations detected in 39% All negative for 19 HPV types

African ESCC somatic mutations: unpublished/new studies

- Pilot whole exome sequencing of 10 SAB blood/tumour pairs
- Recurrently mutated: TP53 (7), ATR (2), GNAS (2), MAGI2 (2)
- Other mutations: FBXW7, FLT3, NFE2L2, TET2, ZNF750
- Sanger sequencing: TP53 mutated in 18/26 tumours (69%)

 Newton fund: Parker, Mathew, Campbell et al: Whole genome sequencing of 30 ESCC (SAB) B/T pairs & RNA-seq > driver mutations and mutational signatures. Follow up sequencing of gene panels in ~300 ESCC

Summary and Conclusions

- Few robust genetic associations with African OSCC thus far; *XBP1/CHEK2* locus looks promising
- Lack of replication may reflect
 - modest sample sizes, statistical power,
 - lower linkage disequilibrium with causal variants in African populations would also reduce power
 - population-specific differences owing to absence of causal variants and different gene x environmental interactions
- Limited genomic screens for somatic mutations thus far
- *TP53* mutations common in South African and Kenyan OSCC

African ESCC Genetics/Genomics: Unanswered Questions

- How much does genetic variation contribute to the development of African ESCC, and are their regional differences?
- Shorter blocks of linkage disequilibrium in African populations implies denser genotyping panels; WGS may be needed for full discovery
- Need substantial additional case/control recruitment for well powered GWAS, a collaborative approach for replication studies/meta-analysis and \$\$\$
- What are the major genomic drivers of tumorigenesis in African ESCC? Need to do WGS on substantial numbers of blood/tumour pairs (ICGC standard is 500)
- Will extraction of mutational signatures from WGS of tumours provide useful insights into environmental risk factors?