U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Family Studies in Shanxi, China: Search for high-risk susceptibility genes

Alisa M. Goldstein Genetic Epidemiology Branch/DCEG NCI-IARC Tumor Workshop: ESCC September 2016

Risk Variant Classification

Variant Type	Frequency	Penetrance Risk*
High-risk Family Studies	Very rare to Rare	Very High [5 - >20]
Moderate-risk Family Studies/GWAS	Rare [often <0.01]	Intermediate [1.5 - <5]
Low-risk GWAS	Common	Low [<1.5]

*Relative risk of carriers versus noncarriers

Areas in red are those with highest esophageal cancer rates from 1973-1975 national mortality survey.

Family History (FH) of ESCC in First-Degree Relatives (FDR) of 600 ESCC Cases/1514 Controls [Gao et al, 2009 BMC Cancer]

Relatives	Ctrl/Case%	OR	95% CI
FH of ESCC (FDR)	6/16%	2.84	2.09-3.86
Father	3/7%	2.01	1.31-3.10
Mother	2/6%	3.27	1.96-5.47
Siblings	1/6%	4.66	2.67-8.13
1 relative with ESCC	6/14%	2.53	1.84-3.50
2+ relatives with ESCC	0.3/2%	10.0	3.24-31.2
Non-blood relatives	0.6/1%	1.86	0.68-5.10

Family History (FH) of Cancer in First-Degree Relatives of Cases/Controls* [Gao et al, 2009 BMC Cancer]

FH of Cancer	ESCC OR (95% CI)	GCA OR (95% CI)	GNCA OR (95% CI)
Any UGI Can	cer		
1 Affected	2.1 (1.6-2.7)	1.4 (1.1-1.9)	1.5 (1.1-2.2)
≥2 Affected	6.4 (2.8-15.6)	5.4 (2.3-12.7)	4.8 (1.7-13.6)
Any non-UGI Cancer	1.0 (0.7-1.3)	0.9 (0.7-1.3)	1.2 (0.8-1.8)

*600 ESCC ca, 598 GCA ca, 316 GNCA ca, 1514 controls

Shanxi Family Study

Number of families: 148 Number of UGI cases/family: 2 - >8 Most families have 1-2 UGI cases with DNA 92 families with ≥3 UGI cases selected for whole exome sequencing (WES) 24 families: ESCC only 53 families: ESCC & Gastric cancer (GC) 177 UGI cases/obligate carriers >75% families ≤2 UGI cases with DNA

Genetic Syndromes of ESCC

Tylosis with Esophageal Cancer

Genetic disorder characterized by thickening of the palms and soles (hyperkeratosis), white patches in the mouth (oral leukoplakia), and very high risk of ESCC

Disease gene: RHBDF2 (17q25)

Is tylosis seen in Shanxi? No

No disease-related mutations in RHBDF2

UGI WES Analysis Strategies

Although multiple candidate genes in 1-2 families, no frequent high-risk susceptibility genes identified

Exclude common variants seen in public databases or in-house datasets

Apply dominant genetic model

Same variants/genes in multiple families

In Silico function prediction/literature review

Technical Validation/Cosegregation

5-100

Follow-up in Shanxi casecontrol sample

- Sequenced 21 genes
- ~560 Cases
- ~590 Controls

Follow-up in Henan casecontrol sample

- Genotyped ~50 variants
- ~2600 ESCC cases
- ~2000 GC cases
- ~4500 Controls

Next Steps

- Determination of top candidate genes/variants for further follow-up
- Follow-up activities: Functional studies of top genes/variants In silico Laboratory-based Genotyping/sequencing of more cases and/or controls Collaborations to share WES UGI data Other populations with ESCC families?

High-Risk Gene Discovery Challenges

- Genetic heterogeneity multiple genes responsible for disease susceptibility
- Lack of power/informativeness of sample
- Underlying complexity of disease cause(s)
 - Clinical/epidemiologic heterogeneity and/or misclassification
- Rarity of mutations
 - Proving causality for "private" mutations
 - Differentiating true positives from false positives
- No (or few) high-risk susceptibility genes

Genetic Risk Loci

Slide courtesy of Teri Manolio, NHGRI

Multiple low-risk variants in families?

Recent evaluation in complex diseases suggested that multiple low-risk variants may explain disease risk in some families Examine in exome families using OmniXpress Polygenic risk score (PRS) in ESCC Low-risk ESCC loci identified from GWAS Tested whether family history (FH) subgroups differed in extent of enrichment for polygenic effects Shanxi ESCC FH+ vs FH- cases Average PRS: 0.55 vs 0.49 (p=0.04)

Summary

- To search for high-risk genes in ESCC, we conducted a family study in Shanxi, China
- WES performed in 92 3+ UGI case families
 Including 24 ESCC only and 53 ESCC + GC
- No frequent high-risk genes yet identified
 Multiple candidate genes in 1-2 families each
 Extensive follow-up including functional studies required to prove causation
- Examination of low-risk variants in WES families in process to determine whether risks in families result from multiple low-risk variants

Difficult Questions

Although WES offers opportunities for identifying high-risk ESCC genes, studies are complex with many challenges How to prove causality for "private" mutations? What are the best strategies for identifying highrisk ESCC genes? Do multiple low-risk variants explain disease risk in some families from high-risk regions?

How do we reduce risk/prevent disease in ESCC families from high-risk regions?

Acknowledgements

- ➢ DCEG, NCI
- Philip R. Taylor
- Nan Hu
- Wen-Qing Li
- Hua Su
- Lemin Wang
- Chaoyu Wang
- Melissa Rotunno
- Jianxin Shi
- Paula Hyland
- Hyuna Sung
- Margaret A. Tucker
- Stephen J. Chanock
- Geoffrey S. Tobias
- ➤ CCR, NCI
- Maxwell Lee

- Shanxi, China
- Ding Ti
- He Li-Ji,
- Han Xaio-Yu
- CGR, NCI
- Cancer Genomics
 Research Laboratory,
 Leidos Biomedical
 Research, Inc.
- Henan, China
 Li-Dong Wang
 Xin Song
- IMSCarol Giffen